問題の選択が運命の分かれ目に
――第3問から第5問は選択問題で、そのうちの2問を選ぶわけですが、難度を考えると、どれを選んだ方が良かったのでしょうか。
石田 第3問、第4問と比べて、第5問の平面図形は圧倒的に処理量が少なかったため、有利だったと思います。平面図形は一般の入試ではあまり出題されないので、高校の授業でも重点を置かないことが多いのですが、この分野の学習を重視せよと誘導しているかのようにさえ見えます。
とはいうものの、共通テストでは原則として図が与えられていません(これはセンター試験でもそうでした)。したがって平面図形の問題では、問題文を読みながら自分で図を書き、出題者の想定している解法の筋道を慎重に探ることが必要となります。読解力と、論理的な思考力が要求されます。
(1)では、メネラウスの定理の形をきちんと自分で作り、その結果をよく観察して誘導に従えば綺麗な結果が得られるようになっています。
(2)では、新たに与えられた条件を読み解いて、相似または方べきの定理が適用できることに気付くことが必要で、さらに、(1)の結論を利用することに気が付くことがポイントになっています。
(3)では、(1)の解法を振り返り、具体的な数値であったDE/ADの値を一般化することが求められていることを理解すれば、すぐに正解が得られるようにできています。この問題もやはり、数学的活動を振り返って本質を取り出し、次の具体的な問題に適用するという、共通テストが目指す方向性に沿って作られた問題といえそうです。
――図が描けることが命運を分けそうです。第3問の確率の問題はいかがでしょう。
石田 プレゼント交換会で、自分以外の人の持ってきたプレゼントを全員が受け取れる確率を考えさせる問題で、これは「完全順列(撹乱順列)」といわれる有名問題です。必ず教科書や問題集に載っている問題なのですが、実は数学的にさまざまな深め方が可能な問題です。「これはこう解く」という解き方を1つ教わって終わってしまうのではなく,いろいろな見方をして理解を深めるといった数学的活動を経験していると、問われていることの意味が理解しやすかったでしょう。
まず(1)で人数の少ない場合から順に考えさせ、そこで得られた知見を(2)で活用することが求められます。さらに(3)では、(1)(2)の経験をもう一段深めて使うことが想定されています。
このように、以前の経験を振り返って、本質を抽出して適用するという練習を積んでいなかった受験生には難しく思えたでしょう。本問も、得られた結果を「統合的・発展的に考え問題を解決する」という共通テスト数学の方向性に従った出題となっていました。
――第4問は整数を扱っています。
石田 この問題は、完答するのが大変だったと思います。共通テストが目指す方向性に沿った出題であることは理解できるのですが、やや力が入りすぎているようにも思えます。
1次不定方程式の(1)は基本問題ですが、(2)は難関大の2次試験で出題されてもおかしくない水準の問題です。
625の2乗=5の8乗(5×5×5×5×5×5×5×5)といった大きな数が係数に表れる不定方程式が扱われており、もうこの大きな数が出てきた時点でお手上げとなった受験生も多かったでしょう。丁寧な誘導が付いているのですが、これを読み解くことも難しかったものと思われます。
続く(3)は、(2)での処理手順を振り返ってその経験を抽出し、同様の処理を行わせる問題でした。他の問題にあったように共通テストの目指す方向性が現れた出題なのですが、この処理には、かなりの実力が必要でした。さらに、最後のyの値を求める計算が(11の5乗×19-1)÷(2の5乗)といった大変な計算を強いるものであったこともあり、難関大に合格する実力のある受験生でも時間内に処理し切るのは大変だったと思います。
次回は、数学II・数学Bについて、同様に考えていきましょう。